Eco-Industry · Farm Management · Community Groups · Courses · Consultancy · Chat Room · Contact Us
· Q & A Forum · Country Kitchen · Healthy House · Healthy Lifestyle · Kid's Pages

 


Please visit our great sponsors who keep this website open for you

     
How Rare Earth miner Lynas became a political football in Malaysia

Rare Earth Elements Uses

Electric Vehicles

Energy Efficiency in Transportation

Nissan Terra, Peugeot Onyx

Magnesium in the 21st Century: A Better Choice for Transportation

Liquid Fluoride Thorium Reactor Development

10-20MW Offshore Wind Turbines

From Fine Black Powder to Electric Motor:
Permanent Magnets

Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

Rare Earth New Band Magnetism

Magnetic Sheet Fanner

Trade-In/Upgrade Program for Magnetic Separators

Breakthrough Discovery in the Physics of Magnetism

Self-Cleaning Pneumatic Line Magnet

Quantum Rare Earth Developments

Magnetic Device Studied as Treatment for Heartburnand Acid Reflux

Drug Linked to Fewer Deaths Among Kidney Patients Undergoing Hemodialysis

Maintaining Bone Health Status of End-Stage Renal Disease

Powerful Superconductor in a Class All Its Own

Solar Cell Efficiency Research

Development of New Glass

Rare Earths studied by University of Alabama at Birmingham

World's Highest Engineering Prize

Rare Earths: National Security Concerns

Shortage of Rare Earth Minerals as early as 2015

China Rare Earth Market Trends

Emerging Nuclear Power Market Risks and China’s Possible Domination

First Heavy Rare Earths Processing Plant Outside China

Rare Earth Elements Excite Protein Probes

Rare Earth Metal and Cousin of Platinum is Attractive for Improving Flash Memory Chips

Paint Absorbs Corrosion-causing Chemicals

Research on Novel Compounds of Rare Earth Metals

Theory Aims to Describe Fundamental Properties of Materials

Technology Accelerates Solid-State Lighting

Tracking Phosphorus Runoff from Livestock Manure

World’s Hunger for Phosphorus

Monazite can act as Microscopic Clocks to Date Rock Formations

Rare Earth Minerals used in Fossil Research

New Geochemical Process Can Place Loose Fossils Back Into the Strata or Determine Fakes

Rare Earth used to determine "Terror Bird' Arrived in North America Before Land Bridge

Amorphous Steel:
Three Times Stronger and Non-magnetic

New Technology Could Help Thwart Nuclear Terrorism

Security, Geography Could Hinder Mining Investment in Afghanistan

Virginia Tech Patents

“Upstand” the Alternative to the Bicycle Kickstand

Mint Coins from Rare and Advanced Metals

Global E Waste

Rare Earth Recovery Technology

Reclaim Rare Earth Metals from Spent Fluorescent Lamps

Certified e-Waste Recyclers

Rare Earth Element ETF Promises Real Earning Potential

NYSSA Mining Conference Focuses on Microcap Companies

Brazil Lake Lithium and Rare Earth Metals Project

Mining Industry Sustainability Analysis and 2013

Global Scandium Market Analyzed

Solar Manufacturing Sells Vacuum Furnaces To Hitachi Metals

Strategic Metals Critical to National Defense

 

 

 


Theory Aims to Describe Fundamental Properties of Materials

Gold is shiny, diamonds are transparent, and iron is magnetic. Why is that?

The answer lies with a material's electronic structure, which determines its electrical, optical, and magnetic properties. Sandia relies extensively on using and controlling such properties, for everything from assuring weapons reliability to creating devices from nanomaterials.

Predicting a material's properties by first calculating its electronic structure would cut down experimental time and might lead researchers to uncover new materials with unexpected benefits.

But commonly used simulations are inaccurate, especially for materials like silicon, whose strongly correlated electrons influence each other over a distance and make simple calculations difficult.

Now a team of researchers at Sandia National Laboratories may have a solution that offers huge potential. Through both internal and Department of Energy Office of Science funding, Sergey Faleev and his colleagues applied theoretical innovations and novel algorithms to make a hard-to-use theoretical approach from 1965 amenable to computation. The team's approach may open the door to discovering new phases of matter, creating new materials, or optimizing performance of compounds and devices such as alloys and solar cells.

Their paper, "Quasiparticle Self-Consistent GW Theory," appeared in the June 9, 2006, issue of Physical Review Letters. GW refers to Lars Hedin's 1965 theory that elegantly predicts electronic energy for ground and excited states of materials. "G" stands for the Greens function — used to derive potential and kinetic energy — and "W" is the screened Coulomb interaction, which represents electrostatic force acting on the electrons. "Quasiparticles" are a concept used to describe particle-like behavior in a complex system of interacting particles. Self-consistent means the particle's motion and effective field, which determine each other, are iteratively solved, coming closer and closer to a solution until the result stops changing.

"Our code has no approximation except GW itself," said Faleev. "It's considered to be the most accurate of all GW implementations to date."

"It works well for everything in the periodic table," adds coauthor Mark van Schilfgaarde, a former Sandian now at Arizona State University. The paper reports results for diverse materials whose properties cannot be consistently predicted by any other theory. The 32 examples include alkali metals, semiconductors, wide band-gap insulators, transition metals, transition metal oxides, magnetic insulators, and rare earth compounds.

Describing force

"Everything in solids is held together by electrostatic forces," says van Schilfgaarde. "You can think of this as a huge dance with an astronomically large number of particles, 1023, that is essentially impossible to solve. The raw interactions among the particles are remarkably complex.

"Hedin replaced the raw interactions with 'dressing' the particle with a screened interaction," van Schilfgaarde continues, "so the effective charge is much smaller. It becomes much more tractable but the equations become more complicated — you have an infinite number of an infinite number of terms. The hope is that the higher-order terms die out quickly."

The researchers' use of GW makes the expansion much more rapidly convergent.
"We're pretty confident we got the approach right," he says. He now would like another group to independently verify this way of framing the task.

Promise and challenges ahead

The researchers use a molecular dynamics code, VASP (Vienna Ab-initio Simulation Package) to model, for example, equations of state in high-energy-density matter. These equations of state depend on quantities like electrical conductivity. Calculating this requires detailed knowledge of the electronic structure — a perfect application for Faleev's work. The researchers hope to describe optical spectra, calculate total energy, and account for more than 10 atoms in a unit cell — at 100 times the current speed.

Accelerating the code would facilitate modeling in other research areas at Sandia, such as simulating titanium dioxide used in surface science, or aiding research into carbon nanotubes that might be used in electronic or optical devices.

"To calculate absorption or optical spectra is a huge problem," Faleev says with anticipation. "To make it faster is a huge problem. To make it more accurate is a huge problem. To incorporate VASP is a huge problem."

Van Schilfgaarde agrees. "It's quite an accomplishment to do it at all. It takes someone who is very strong in math, and a clever programmer. We spent easily five to six man-years between us to make it work.

"If we can get the approach right, we can have a theory that's universally accurate for anything we want — that's really pretty neat, just requiring knowledge of where the atoms are."

Van Schilfgaarde believes the theory's advantage would be to offer true insight into material behavior. "It's kind of like adding night-vision goggles to soldiers working in the dark," he says. "Probably in 10 years," adds Sergey, "everyone will use this."

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

 

2/15/2007
Sandia National Laboratories

 

Copyright© 2012-2013, 1EarthMedia. All rights reserved