Eco-Industry · Farm Management · Community Groups · Courses · Consultancy · Chat Room · Contact Us
· Q & A Forum · Country Kitchen · Healthy House · Healthy Lifestyle · Kid's Pages

 


Please visit our great sponsors who keep this website open for you

     
How Rare Earth miner Lynas became a political football in Malaysia

Rare Earth Elements Uses

Electric Vehicles

Energy Efficiency in Transportation

Nissan Terra, Peugeot Onyx

Magnesium in the 21st Century: A Better Choice for Transportation

Liquid Fluoride Thorium Reactor Development

10-20MW Offshore Wind Turbines

From Fine Black Powder to Electric Motor:
Permanent Magnets

Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

Rare Earth New Band Magnetism

Magnetic Sheet Fanner

Trade-In/Upgrade Program for Magnetic Separators

Breakthrough Discovery in the Physics of Magnetism

Self-Cleaning Pneumatic Line Magnet

Quantum Rare Earth Developments

Magnetic Device Studied as Treatment for Heartburnand Acid Reflux

Drug Linked to Fewer Deaths Among Kidney Patients Undergoing Hemodialysis

Maintaining Bone Health Status of End-Stage Renal Disease

Powerful Superconductor in a Class All Its Own

Solar Cell Efficiency Research

Development of New Glass

Rare Earths studied by University of Alabama at Birmingham

World's Highest Engineering Prize

Rare Earths: National Security Concerns

Shortage of Rare Earth Minerals as early as 2015

China Rare Earth Market Trends

Emerging Nuclear Power Market Risks and China’s Possible Domination

First Heavy Rare Earths Processing Plant Outside China

Rare Earth Elements Excite Protein Probes

Rare Earth Metal and Cousin of Platinum is Attractive for Improving Flash Memory Chips

Paint Absorbs Corrosion-causing Chemicals

Research on Novel Compounds of Rare Earth Metals

Theory Aims to Describe Fundamental Properties of Materials

Technology Accelerates Solid-State Lighting

Tracking Phosphorus Runoff from Livestock Manure

World’s Hunger for Phosphorus

Monazite can act as Microscopic Clocks to Date Rock Formations

Rare Earth Minerals used in Fossil Research

New Geochemical Process Can Place Loose Fossils Back Into the Strata or Determine Fakes

Rare Earth used to determine "Terror Bird' Arrived in North America Before Land Bridge

Amorphous Steel:
Three Times Stronger and Non-magnetic

New Technology Could Help Thwart Nuclear Terrorism

Security, Geography Could Hinder Mining Investment in Afghanistan

Virginia Tech Patents

“Upstand” the Alternative to the Bicycle Kickstand

Mint Coins from Rare and Advanced Metals

Global E Waste

Rare Earth Recovery Technology

Reclaim Rare Earth Metals from Spent Fluorescent Lamps

Certified e-Waste Recyclers

Rare Earth Element ETF Promises Real Earning Potential

NYSSA Mining Conference Focuses on Microcap Companies

Brazil Lake Lithium and Rare Earth Metals Project

Mining Industry Sustainability Analysis and 2013

Global Scandium Market Analyzed

Solar Manufacturing Sells Vacuum Furnaces To Hitachi Metals

Strategic Metals Critical to National Defense

 

 

 


Breakthrough Discovery in the Physics of Magnetism

Renowned scientist and inventor Larry Fullerton applies signal correlation methods and coding theory to magnetism to precisely control magnetic fields. Coded magnetic structures correlate to produce stronger bonding force, programmable precision alignment, and deterministic magnetic field interaction that promise to accelerate product performance and innovation.
.
Huntsville, AL October 8, 2009

Correlated Magnetics Research LLC (CMR) announced today the development of a new technology that will allow the design and manufacture of programmable magnets for use across industry and worldwide.

Coded magnetic structures can be designed to deliver precise holding strength characteristics, customized release behavior, prescribed alignment tolerances and even unique identities that can discriminate among other programmed magnets and determine which devices will interact. Rare-earth materials, ferrites and electromagnets alike can be programmed using one-, two- or three-dimensional arrays of magnetic elements that alternate polarities in a prescribed spatial pattern.

"We applied signal correlation methods that are well-understood and widely used in radio communications today", said company founder and Chief Scientist Larry Fullerton. "By alternating the polarity of individual magnetic elements on the magnet surface, we can alter the shape and density of the magnetic field.

"I initially programmed a pair of correlated magnets to produce a peak attractive force at one alignment and one alignment only. What this means in practical terms is that two very strong magnets will lock together in one particular alignment, but then can be easily released by twisting the patterns away from the correlated position," Fullerton said.

Coded magnetic devices offer dramatic improvement in safety for applications involving strong industrial magnets as well, because the engagement distance or "reach" can be precisely controlled.

For example, a coded magnet strong enough to lift a large metal cargo container won't attract metal until it's within inches of its intended target. Door locks and other hardware can be programmed so pacemakers and credit cards are not affected.

By using programmed magnets, designers can increase magnet performance, or decrease the size and weight required to achieve a particular design objective. This realization comes at a time when the cost of magnetic materials is increasing rapidly, and the availability of rare-earth materials is becoming less reliable.

Permanent magnets are utilized in millions of household and industrial machines around the world. CMR will license the programmable magnets technology to manufacturers in automotive, aerospace, environmental, construction, biomedical and consumer products industries, thereby maintaining its focus on continued research and development.

CMR has 60 patents filed with the U.S. Patent Office as well as international patent organizations. For more information about programmable magnets, contact CMR representatives or visit the CMR website at http://www.correlatedmagnetics.com.

About Correlated Magnetics Research, LLC: CMR was founded in 2008 by Larry Fullerton and Mark Roberts to pursue research and development activities in the field of correlated magnetic structures. MagnitsTM, Coded MagnetsTM and Correlated Magnetics are registered trademarks of Correlated Magnetics Research, LLC.

North America
Ron Jewell, Correlated Magnetics Research, LLC
TEL: 678-528-4113

United Kingdom
Matthew Scherba, Tx3 Solutions, Ltd
TEL: +44 (0) 207 297 2036

Denmark
Ole Toft, OLETO Corporation
TEL: +45 2922 6564

 

Copyright© 2012-2013, 1EarthMedia. All rights reserved