Eco-Industry · Farm Management · Community Groups · Courses · Consultancy · Chat Room · Contact Us
· Q & A Forum · Country Kitchen · Healthy House · Healthy Lifestyle · Kid's Pages


Please visit our great sponsors who keep this website open for you

How Rare Earth miner Lynas became a political football in Malaysia

Rare Earth Elements Uses

Electric Vehicles

Energy Efficiency in Transportation

Nissan Terra, Peugeot Onyx

Magnesium in the 21st Century: A Better Choice for Transportation

Liquid Fluoride Thorium Reactor Development

10-20MW Offshore Wind Turbines

From Fine Black Powder to Electric Motor:
Permanent Magnets

Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

Rare Earth New Band Magnetism

Magnetic Sheet Fanner

Trade-In/Upgrade Program for Magnetic Separators

Breakthrough Discovery in the Physics of Magnetism

Self-Cleaning Pneumatic Line Magnet

Quantum Rare Earth Developments

Magnetic Device Studied as Treatment for Heartburnand Acid Reflux

Drug Linked to Fewer Deaths Among Kidney Patients Undergoing Hemodialysis

Maintaining Bone Health Status of End-Stage Renal Disease

Powerful Superconductor in a Class All Its Own

Solar Cell Efficiency Research

Development of New Glass

Rare Earths studied by University of Alabama at Birmingham

World's Highest Engineering Prize

Rare Earths: National Security Concerns

Shortage of Rare Earth Minerals as early as 2015

China Rare Earth Market Trends

Emerging Nuclear Power Market Risks and China’s Possible Domination

First Heavy Rare Earths Processing Plant Outside China

Rare Earth Elements Excite Protein Probes

Rare Earth Metal and Cousin of Platinum is Attractive for Improving Flash Memory Chips

Paint Absorbs Corrosion-causing Chemicals

Research on Novel Compounds of Rare Earth Metals

Theory Aims to Describe Fundamental Properties of Materials

Technology Accelerates Solid-State Lighting

Tracking Phosphorus Runoff from Livestock Manure

World’s Hunger for Phosphorus

Monazite can act as Microscopic Clocks to Date Rock Formations

Rare Earth Minerals used in Fossil Research

New Geochemical Process Can Place Loose Fossils Back Into the Strata or Determine Fakes

Rare Earth used to determine "Terror Bird' Arrived in North America Before Land Bridge

Amorphous Steel:
Three Times Stronger and Non-magnetic

New Technology Could Help Thwart Nuclear Terrorism

Security, Geography Could Hinder Mining Investment in Afghanistan

Virginia Tech Patents

“Upstand” the Alternative to the Bicycle Kickstand

Mint Coins from Rare and Advanced Metals

Global E Waste

Rare Earth Recovery Technology

Reclaim Rare Earth Metals from Spent Fluorescent Lamps

Certified e-Waste Recyclers

Rare Earth Element ETF Promises Real Earning Potential

NYSSA Mining Conference Focuses on Microcap Companies

Brazil Lake Lithium and Rare Earth Metals Project

Mining Industry Sustainability Analysis and 2013

Global Scandium Market Analyzed

Solar Manufacturing Sells Vacuum Furnaces To Hitachi Metals

Strategic Metals Critical to National Defense




From Fine Black Powder to Electric Motor:
VCU Receives Federal Contract to Design and Develop Permanent Magnets


RICHMOND, Va. – Virginia Commonwealth University has received a contract totalling $2.9 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy, ARPA-E, to develop and design a new class of permanent magnets to be used in energy-efficient electric car motors or generators.

The VCU-led research is one of 14 projects being funded through ARPA-E’s Rare Earth Alternatives in Critical Technologies program, or REACT, which awarded a total of $31.6 million in funding to academic institutions across the country for similar projects last month.

The REACT program is focused on the development of alternatives to rare earth elements, which are minerals that occur naturally in the environment, for use in technologies such as electric motor and generator applications. This year, the REACT program received 89 concept papers and 14 were selected for funding. Read ARPA-E’s announcement here.

With a push for more energy-efficient and green-powered technologies, materials scientists are working to advance the field of magnets by creating permanent magnets that can perform equivalent to the best commercial magnets, and are less expensive than what is available on the market – without relying on rare earth elements. Rare earth elements are difficult and costly to process and refine the metal.

The goal of the three-year project at VCU is to use the magnetic carbide-based composite – which looks like a fine black powder – to develop a magnet for use in a prototype electric motor. The transition metal carbide nanomagnets, which require no rare earth elements, was developed by Everett Carpenter Ph.D., associate professor of inorganic and materials chemistry and affiliate professor of chemical and life science engineering, and his team at VCU.

“Recent market trends have made the production and procurement of rare earth permanent magnets more challenging and less cost efficient - creating a secure supply of these materials here in the U.S. is critical,” said Carpenter.

“This material represents a major paradigm shift. Traditionally, minerals such as iron, nickel, cobalt are mined from foundries, melted together, and fabricated just like you would steel. Our process is a chemical process that’s nanobased. The program, if successful, would result in the first commercially viable rare-earth free magnet in nearly 50 years,” he said.

According to Carpenter, the cost to produce this new magnetic material could be significantly reduced due to a simplified synthesis technique. For example, he said, the cost of making a rare earth magnet such as Samarium cobalt is approximately $70 per pound, but using the chemical process to create this new magnet could significantly lower production costs to $1.50 per pound.

The REACT program is focused on electric motor and generator applications, but the materials can be used in a host of other areas such as defense and telecommunications, said Carpenter.

Carpenter’s team has been working closely with Shiv Khanna, Ph.D., professor of physics, and colleagues in the VCU Department of Physics.

The VCU team, consisting of Carpenter and Khanna, is collaborating with research teams from Northeastern University, the University of California-San Diego, Brookhaven National Laboratory, Moog Components Inc., Arnold Magnetics Technologies and Bayer Technology Services – each will play a specific role in the development, design, optimization and manufacturing process of this new magnetic material.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see

Source: Virginia Commonwealth University

Copyright© 2012-2013, 1EarthMedia. All rights reserved